p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.92C24, C24.157C23, C22.151C25, C42.133C23, C4.1652+ 1+4, D4⋊6D4⋊45C2, D4⋊5D4⋊41C2, Q8⋊5D4⋊35C2, Q8⋊6D4⋊31C2, (C4×D4)⋊74C22, C4⋊Q8⋊104C22, (C4×Q8)⋊70C22, C4⋊1D4⋊29C22, C4⋊D4⋊94C22, C4⋊C4.334C23, (C2×C4).141C24, (C2×C42)⋊78C22, C22⋊Q8⋊56C22, (C2×D4).340C23, C4.4D4⋊46C22, (C2×Q8).472C23, C42.C2⋊27C22, (C22×Q8)⋊47C22, C42⋊2C2⋊48C22, C42⋊C2⋊68C22, C22.29C24⋊36C2, C22.32C24⋊25C2, C22≀C2.16C22, C22⋊C4.119C23, (C22×C4).410C23, C22.54C24⋊13C2, C22.45C24⋊23C2, C2.76(C2×2+ 1+4), C2.62(C2.C25), C22.26C24⋊57C2, (C22×D4).442C22, C22.D4⋊26C22, C22.34C24⋊27C2, C22.47C24⋊39C2, C22.35C24⋊23C2, C22.56C24⋊16C2, C22.50C24⋊39C2, C22.53C24⋊26C2, C22.33C24⋊23C2, C23.38C23⋊38C2, C23.36C23⋊60C2, (C2×C4⋊C4)⋊93C22, (C2×C4○D4)⋊55C22, (C2×C22⋊C4).395C22, SmallGroup(128,2294)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.151C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=g2=a, f2=ba=ab, dcd=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 844 in 525 conjugacy classes, 380 normal (122 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C42⋊2C2, C42⋊2C2, C4⋊1D4, C4⋊1D4, C4⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C23.36C23, C22.26C24, C22.29C24, C23.38C23, C22.32C24, C22.33C24, C22.34C24, C22.34C24, C22.35C24, D4⋊5D4, D4⋊6D4, Q8⋊5D4, Q8⋊6D4, C22.45C24, C22.47C24, C22.50C24, C22.53C24, C22.54C24, C22.56C24, C22.151C25
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C2×2+ 1+4, C2.C25, C22.151C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 23)(2 16)(3 21)(4 14)(5 29)(6 10)(7 31)(8 12)(9 20)(11 18)(13 25)(15 27)(17 30)(19 32)(22 26)(24 28)
(1 6)(2 18)(3 8)(4 20)(5 26)(7 28)(9 16)(10 21)(11 14)(12 23)(13 30)(15 32)(17 27)(19 25)(22 31)(24 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 29 25 11)(2 30 26 12)(3 31 27 9)(4 32 28 10)(5 21 18 15)(6 22 19 16)(7 23 20 13)(8 24 17 14)
(1 21 3 23)(2 22 4 24)(5 9 7 11)(6 10 8 12)(13 25 15 27)(14 26 16 28)(17 30 19 32)(18 31 20 29)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,23)(2,16)(3,21)(4,14)(5,29)(6,10)(7,31)(8,12)(9,20)(11,18)(13,25)(15,27)(17,30)(19,32)(22,26)(24,28), (1,6)(2,18)(3,8)(4,20)(5,26)(7,28)(9,16)(10,21)(11,14)(12,23)(13,30)(15,32)(17,27)(19,25)(22,31)(24,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,29,25,11)(2,30,26,12)(3,31,27,9)(4,32,28,10)(5,21,18,15)(6,22,19,16)(7,23,20,13)(8,24,17,14), (1,21,3,23)(2,22,4,24)(5,9,7,11)(6,10,8,12)(13,25,15,27)(14,26,16,28)(17,30,19,32)(18,31,20,29)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,23)(2,16)(3,21)(4,14)(5,29)(6,10)(7,31)(8,12)(9,20)(11,18)(13,25)(15,27)(17,30)(19,32)(22,26)(24,28), (1,6)(2,18)(3,8)(4,20)(5,26)(7,28)(9,16)(10,21)(11,14)(12,23)(13,30)(15,32)(17,27)(19,25)(22,31)(24,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,29,25,11)(2,30,26,12)(3,31,27,9)(4,32,28,10)(5,21,18,15)(6,22,19,16)(7,23,20,13)(8,24,17,14), (1,21,3,23)(2,22,4,24)(5,9,7,11)(6,10,8,12)(13,25,15,27)(14,26,16,28)(17,30,19,32)(18,31,20,29) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,23),(2,16),(3,21),(4,14),(5,29),(6,10),(7,31),(8,12),(9,20),(11,18),(13,25),(15,27),(17,30),(19,32),(22,26),(24,28)], [(1,6),(2,18),(3,8),(4,20),(5,26),(7,28),(9,16),(10,21),(11,14),(12,23),(13,30),(15,32),(17,27),(19,25),(22,31),(24,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,29,25,11),(2,30,26,12),(3,31,27,9),(4,32,28,10),(5,21,18,15),(6,22,19,16),(7,23,20,13),(8,24,17,14)], [(1,21,3,23),(2,22,4,24),(5,9,7,11),(6,10,8,12),(13,25,15,27),(14,26,16,28),(17,30,19,32),(18,31,20,29)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2L | 4A | ··· | 4F | 4G | ··· | 4Y |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ 1+4 | C2.C25 |
kernel | C22.151C25 | C23.36C23 | C22.26C24 | C22.29C24 | C23.38C23 | C22.32C24 | C22.33C24 | C22.34C24 | C22.35C24 | D4⋊5D4 | D4⋊6D4 | Q8⋊5D4 | Q8⋊6D4 | C22.45C24 | C22.47C24 | C22.50C24 | C22.53C24 | C22.54C24 | C22.56C24 | C4 | C2 |
# reps | 1 | 2 | 1 | 1 | 1 | 4 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of C22.151C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 1 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
3 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 1 | 3 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 1 | 3 | 0 | 0 | 0 | 0 |
4 | 0 | 1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,1,4,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0],[3,0,0,2,0,0,0,0,2,0,2,0,0,0,0,0,2,3,0,3,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0],[0,4,4,4,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,3,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,4,4,4,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0] >;
C22.151C25 in GAP, Magma, Sage, TeX
C_2^2._{151}C_2^5
% in TeX
G:=Group("C2^2.151C2^5");
// GroupNames label
G:=SmallGroup(128,2294);
// by ID
G=gap.SmallGroup(128,2294);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,184,2019,570,360,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=g^2=a,f^2=b*a=a*b,d*c*d=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations